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Spoken Language Understanding

@ previously state-of-the-art were Conditional Random Fields
[Hahn et al., 2011]

@ recently Recurrent Neural Networks brings improvements
on the ATIS database [Mesnil et al., 2013]

questions:

@ where does the RNN gain come from?
@ classifier ?
@ representation ?

@ are RNNSs a better choice for SLU?

o is the dataset challenging enough to differentiate the two
methods?

A
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Possible gain sources

input representation
@ symbolic input
@ numerical input / embedding

< compare both inputs with a single independent classifier that
can work with both input types

classification algorithm

— compare the two classifiers on a challenging dataset
(MEDIA)
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ATIS & Media presentation

ATIS: obtain air travel information such as flight schedules,
fares, and ground transportation from a relational database

x=list ~ twa flights from washington _fo
— =~ —~—

y=<null><airline> <null> <depart.city><null>

———

MEDIA: reservation of hotel rooms with tourist information.

Xx=euh une  chambre pour deux personnes
N~ —~—

y=<null><number> <room-type>
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ATIS & Media sets

Air Travel Information System

@ Train corpus: 4978 utterances

@ Test corpus: 893 utterances
@ 572 words, 64 labels

@ words supporting concept 49%

@ segmentation: : almost one word to concept correspondence
@ classification: : main ambiguity — departure vs arrival info

@ Train corpus: 12922 utterances

@ Test corpus: 4772 utterances
@ 2460 words, 75 labels

@ words supporting concept 72%

@ segmentation: hard
@ classification: hard: hierarchical attributes, complex dependencies
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ATIS & Media in the literature

@ best error rate: ~ 4/5% @ best error rate: ~ 12%
@ many classifiers @ CRF perform the best

performs well (8% — 4%)
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Figure: F-measure according to the number of boosting iterations
with symbolic and features
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Symbolic vs embedded inputs on ATIS
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Symbolic vs embedded inputs on MEDIA
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Symbolic vs embedded inputs

@ bonzaiboost (boosting over decision trees) -
straight-forward use with both representations
@ context window of [-3, 3] words/classes
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Figure: F-measure according to the number of boosting iterations
with symbolic and features
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Symbolic vs embedded inputs

@ embedding improves results and convergence speed

e ATIS: ~ +1%
e MEDIA:~ +3%

@ robustness to noise (annotation errors)

Representation | Precision | Recall | F-measure

ATIS
symbolic 93.00% | 93.43% 93.21%
numeric 93.50% | 94.54% 94.02%
MEDIA

symbolic 71.09% | 75.48 % 73.22%
numeric 73.61% | 78.85% 76.14%
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Classifiers comparison

@ boosting over decision trees
e not dedicated to sequence labeling: baseline
e bonzaiboost
http://bonzaiboost.gforge.inria.fr/
[Laurent et al., 2014]

@ CRFs
e dedicated to sequence labeling
o Wapiti https://wapiti.limsi.fr/
[Lavergne et al., 2010]

@ RNNs

Elman Architecture

Jordan Architecture

supervised (joint) v.s. unsupervised(word2vec) embedding
public implementation based on Theano http:
//deeplearning.net/tutorial/rnnslu.html


http://bonzaiboost.gforge.inria.fr/
https://wapiti.limsi.fr/
http://deeplearning.net/tutorial/rnnslu.html
http://deeplearning.net/tutorial/rnnslu.html
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Classifiers comparison: ATIS

Algorithm | Parameter | Representation | Precision | Recall | F-measure [ Training Time
ATIS
Bonzaiboost | 100 iter | numeric (word2vec) | 93.50% | 94.54% | 94.02% ~20m
Bonzaiboost | 100 iter symbolic 93.12% | 92.82% | 92.97% ~3m
CRF default symbolic 95.53% | 94.92% | 95.23% ~6m
Elman RNN | 100 hdn numeric (joint) 96.20% | 96.12% 96.16% ~1.5h
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Classifiers comparison: ATIS

Algorithm | Parameter | Representation | Precision | Recall | F-measure [ Training Time
ATIS
Bonzaiboost | 100 iter | numeric (word2vec) | 93.50% | 94.54% | 94.02% ~20m
Bonzaiboost | 100 iter symbolic 93.12% | 92.82% | 92.97% ~3m
CRF default symbolic 95.53% | 94.92% | 95.23% ~6m
Elman RNN | 100 hdn numeric (joint) 96.20% | 96.12% 96.16% ~1.5h

@ very similar performances

@ RNN performs better (~1%)
e main reason: embedding
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Classifiers comparison: MEDIA

Algorithm | Parameter [ Representation | Precision | Recall | F-measure | Training Time
MEDIA

Bonzaiboost | 500 iter. | numeric (word2vec) | 73.61% | 78.85% 76.14% ~25h

Bonzaiboost | 500 iter. symbolic 71.09% | 7548 % | 73.22% ~34 m
CRF default symbolic 87.70% | 84.35% | 86.00% ~15m

Elman RNN | 500 hdn numeric (joint) 83.36% | 80.22% 81.76% ~31h

Elman RNN | 500 hdn | numeric (word2vec) | 80.48% | 83.46% 81.94% ~22h

Jordan RNN | 500 hdn numeric (joint) 82.76% | 83.75% | 83.25% ~3.5h

Jordan RNN | 500 hdn | numeric (word2vec) | 83.40% | 82.90% 83.15% ~3h
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Classifiers comparison: MEDIA

Algorithm | Parameter [ Representation | Precision | Recall | F-measure | Training Time
MEDIA

Bonzaiboost | 500 iter. | numeric (word2vec) | 73.61% | 78.85% 76.14% ~25h

Bonzaiboost | 500 iter. symbolic 71.09% | 7548 % | 73.22% ~34 m
CRF default symbolic 87.70% | 84.35% | 86.00% ~15m

Elman RNN | 500 hdn numeric (joint) 83.36% | 80.22% 81.76% ~31h

Elman RNN | 500 hdn | numeric (word2vec) | 80.48% | 83.46% 81.94% ~22h

Jordan RNN | 500 hdn numeric (joint) 82.76% | 83.75% | 83.25% ~3.5h

Jordan RNN | 500 hdn | numeric (word2vec) | 83.40% | 82.90% 83.15% ~3h

@ CRF obtains best results ~
e despite not using embeddings

@ Jordan RNN had a less stable convergence

@ embeddings learned in a supervised and in an
unsupervised manner behave similarly
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Conclusion

@ embedding brings improvement
e even with the presence of word classes knowledge (like
city-names, efc.)
e more robust to noise
© on the (easier) ATIS dataset, performances are very similar
— RNNs slightly better thanks to the representation

© on the (more challenging) MEDIA dataset, CRFs still
outperform RNNs
—+3%

© output label dependencies appear to be crucial

o CRF | 6% without them
—the recurrence in RNN does not model these
dependencies efficiently

© CRFs are faster and easier to train than RNNs
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