ntroduction	Datasets	Input comparison	Classifiers comparison	Conclusion

Is it time to switch to Word Embedding and Recurrent Neural Networks for Spoken Language Understanding?

Vedran Vukotic, Christian Raymond, Guillaume Gravier

presented by

Frédéric Béchet

IRISA/INRIA/INSA, Rennes, France

september 2nd, 2015

Introduction	Datasets	Input comparison	Classifiers comparison	Conclusion		
•0						
Introduction						

Spoken Language Understanding

- previously state-of-the-art were Conditional Random Fields [Hahn et al., 2011]
- recently Recurrent Neural Networks brings improvements on the ATIS database [Mesnil et al., 2013]

Introduction	Datasets	Input comparison	Classifiers comparison	Conclusion		
0						
Introduction						

Spoken Language Understanding

- previously state-of-the-art were Conditional Random Fields [Hahn et al., 2011]
- recently Recurrent Neural Networks brings improvements on the ATIS database [Mesnil et al., 2013]

questions:

ΠΠΟϤϤΟΠΟΠ

- where does the RNN gain come from?
 - classifier ?
 - 2 representation ?
- are RNNs a better choice for SLU?
 - is the dataset challenging enough to differentiate the two methods?

Introduction ○●	Datasets 000	Input comparison	Classifiers comparison	Conclusion o
-				

Possible gain sources

input representation

- symbolic input
- numerical input / embedding

 \hookrightarrow compare both inputs with a single independent classifier that can work with both input types

classification algorithm

 \hookrightarrow compare the two classifiers on a challenging dataset (MEDIA)

MEDIA: reservation of hotel rooms with tourist information.

00	000	00000	000	
Introduction	Datasets	Input comparison	Classifiers comparison	Conclusion

ATIS & Media sets

Air Travel Information System

- Train corpus: 4978 utterances
- Test corpus: 893 utterances
- 572 words, 64 labels
- words supporting concept 49%
 - segmentation: easy: almost one word to concept correspondence
 - classification: easy: main ambiguity \rightarrow departure vs arrival info

Media

- Train corpus: 12922 utterances
- Test corpus: 4772 utterances
- 2460 words, 75 labels
- words supporting concept 72%
 - segmentation: hard
 - classification: hard: hierarchical attributes, complex dependencies

 Introduction
 Datasets
 Input comparison
 Classifiers comparison
 Conclusion

 ATIS & Media in the literature

ATIS

- best error rate: \sim 4/5%
- many classifiers performs well (8%→ 4%)

MEDIA

- $\bullet\,$ best error rate: \sim 12%
- CRF perform the best

Introduction	Datasets 000	Input comparison ●0000	Classifiers comparison	Conclusion o
Symbolic v	vs embedo	ded inputs		

- bonzaiboost (boosting over decision trees) straight-forward use with both representations
- context window of [-3, 3] words/classes

Introduction	Datasets 000	Input comparison ●○○○○	Classifiers comparison	Conclusion o
Symbolic v	vs embedo	ded inputs		

- bonzaiboost (boosting over decision trees) straight-forward use with both representations
- context window of [-3, 3] words/classes

Figure: F-measure according to the number of boosting iterations with symbolic and numeric features

O		والمحاجبة والمحاجبة		
		0000		
Introduction	Datasets	Input comparison	Classifiers comparison	Conclusion

Symbolic vs embedded inputs on ATIS

10/26

Introduct	ntroduction Datasets		lr c	Input comparison			Classifiers comparison	Conclu o	Conclusion O		
~								_			

Symbolic vs embedded inputs on MEDIA

11/26

Introduction	Datasets 000	Input comparison ○○○●○	Classifiers comparison	Conclusion o
Symbolic v	vs embedo	ded inputs		

- bonzaiboost (boosting over decision trees) straight-forward use with both representations
- context window of [-3, 3] words/classes

Figure: F-measure according to the number of boosting iterations with symbolic and numeric features

00	Datasets		Classifiers comparison	o			
Symbolic vs embedded inputs							

- embedding improves results and convergence speed
 - ATIS: \sim +1%
 - MEDIA: \sim +3%
- robustness to noise (annotation errors)

00	000		000	o			
Symbolic vs embedded inputs							

embedding improves results and convergence speed

- ATIS: \sim +1%
- MEDIA: \sim +3%
- robustness to noise (annotation errors)

Representation	Precision	Recall	F-measure				
ATIS							
symbolic	93.00%	93.43%	93.21%				
numeric	93.50%	94.54%	94.02%				
MEDIA							
symbolic	71.09%	75.48 %	73.22%				
numeric	73.61%	78.85%	76.14%				

Introduction	Datasets 000	Input comparison	Classifiers comparison ●○○	Conclusion O		
Classifiers comparison						

- boosting over decision trees
 - not dedicated to sequence labeling: baseline
 - bonzaiboost

```
http://bonzaiboost.gforge.inria.fr/
[Laurent et al., 2014]
```

- CRFs
 - dedicated to sequence labeling
 - Wapiti https://wapiti.limsi.fr/ [Lavergne et al., 2010]
- RNNs
 - Elman Architecture
 - Jordan Architecture
 - supervised (joint) v.s. unsupervised(word2vec) embedding
 - public implementation based on Theano http: //deeplearning.net/tutorial/rnnslu.html

Introduction	Datasets	Input comparison	Classifiers comparison	Conclusi
			000	

Classifiers comparison: ATIS

Algorithm	Parameter	Representation	Precision	Recall	F-measure	Training Time	
ATIS							
Bonzaiboost	100 iter	numeric (word2vec)	93.50%	94.54%	94.02%	~20 m	
Bonzaiboost	100 iter	symbolic	93.12%	92.82%	92.97%	~3 m	
CRF	default	symbolic	95.53%	94.92%	95.23%	~6 m	
Elman RNN	100 hdn	numeric (joint)	96.20%	96.12%	96.16%	~1.5h	

inpat companicon	Olassiners companson	Conclusio
	000	

Classifiers comparison: ATIS

Algorithm	Parameter	Representation	Precision	Recall	F-measure	Training Time	
ATIS							
Bonzaiboost	100 iter	numeric (word2vec)	93.50%	94.54%	94.02%	~20 m	
Bonzaiboost	100 iter	symbolic	93.12%	92.82%	92.97%	~3 m	
CRF	default	symbolic	95.53%	94.92%	95.23%	~6 m	
Elman RNN	100 hdn	numeric (joint)	96.20%	96.12%	96.16%	~1.5h	

- very similar performances
- RNN performs better (~1%)
 - main reason: embedding

Introduction	Datasets	Input comparison	Classifiers comparison
			000

Classifiers comparison: MEDIA

Algorithm	Parameter	Representation	Precision	Recall	F-measure	Training Time			
	MEDIA								
Bonzaiboost	500 iter.	numeric (word2vec)	73.61%	78.85%	76.14%	~2.5 h			
Bonzaiboost	500 iter.	symbolic	71.09%	75.48 %	73.22%	~34 m			
CRF	default	symbolic	87.70%	84.35%	86.00%	~15 m			
Elman RNN	500 hdn	numeric (joint)	83.36%	80.22%	81.76%	~31 h			
Elman RNN	500 hdn	numeric (word2vec)	80.48%	83.46%	81.94%	~22 h			
Jordan RNN	500 hdn	numeric (joint)	82.76%	83.75%	83.25%	~3.5 h			
Jordan RNN	500 hdn	numeric (word2vec)	83.40%	82.90%	83.15%	~3 h			

Introduction	Datasets	Input comparison	Classifiers comparison
			000

Classifiers comparison: MEDIA

Algorithm	Parameter	Representation	Precision	Recall	F-measure	Training Time			
	MEDIA								
Bonzaiboost	500 iter.	numeric (word2vec)	73.61%	78.85%	76.14%	~2.5 h			
Bonzaiboost	500 iter.	symbolic	71.09%	75.48 %	73.22%	~34 m			
CRF	default	symbolic	87.70%	84.35%	86.00%	~15 m			
Elman RNN	500 hdn	numeric (joint)	83.36%	80.22%	81.76%	~31 h			
Elman RNN	500 hdn	numeric (word2vec)	80.48%	83.46%	81.94%	~22 h			
Jordan RNN	500 hdn	numeric (joint)	82.76%	83.75%	83.25%	~3.5 h			
Jordan RNN	500 hdn	numeric (word2vec)	83.40%	82.90%	83.15%	~3 h			

- CRF obtains best results \sim +3%
 - despite not using embeddings
- Jordan RNN had a less stable convergence
- embeddings learned in a supervised and in an unsupervised manner behave similarly

Introduction	Datasets 000	Input comparison	Classifiers comparison	Conclusion
Conclusio	n			

- even with the presence of word classes knowledge (like city-names, *etc.*)
- more robust to noise

Introduction	Datasets 000	Input comparison	Classifiers comparison	Conclusion
Conclusio	n			

- even with the presence of word classes knowledge (like city-names, *etc.*)
- more robust to noise

Introduction	Datasets 000	Input comparison	Classifiers comparison	Conclusion
Conclusio	n			

- even with the presence of word classes knowledge (like city-names, *etc.*)
- more robust to noise
- On the (easier) ATIS dataset, performances are very similar
 → RNNs slightly better thanks to the representation
- on the (more challenging) MEDIA dataset, CRFs still outperform RNNs

 \hookrightarrow +3%

Introduction	Datasets 000	Input comparison	Classifiers comparison	Conclusion
Conclusio	n			

- even with the presence of word classes knowledge (like city-names, *etc.*)
- more robust to noise
- On the (easier) ATIS dataset, performances are very similar
 → RNNs slightly better thanks to the representation
- on the (more challenging) MEDIA dataset, CRFs still outperform RNNs
 - ⇔+3%
- output label dependencies appear to be crucial
 - CRF ↓ 6% without them
 →the recurrence in RNN does not model these dependencies efficiently

Introduction	Datasets 000	Input comparison	Classifiers comparison	Conclusion
Conclusio	n			

- even with the presence of word classes knowledge (like city-names, *etc.*)
- more robust to noise
- On the (easier) ATIS dataset, performances are very similar
 → RNNs slightly better thanks to the representation
- on the (more challenging) MEDIA dataset, CRFs still outperform RNNs
 - ⇔+3%
- output label dependencies appear to be crucial
 - CRF ↓ 6% without them
 →the recurrence in RNN does not model these dependencies efficiently
- ORFs are faster and easier to train than RNNs

Introduction	Datasets	Input comparison	Classifiers comparison	Conclusion
				•

Hahn, S., Dinarelli, M., Raymond, C., Lefèvre, F., Lehnen, P., De Mori, R., Moschitti, A., Ney, H., and Riccardi, G. (2011).

Comparing Stochastic Approaches to Spoken Language Understanding in Multiple Languages.

IEEE Transactions on Audio, Speech and Language Processing, 19(6):1569–1583.

- Laurent, A., Camelin, N., and Raymond, C. (2014). Boosting bonsai trees for efficient features combination : application to speaker role identification. In InterSpeech, Singapour.

Lavergne, T., Cappé, O., and Yvon, F. (2010). Practical Very Large Scale CRFs.

In Proceedings the 48th Annual Meeting of the Association for Computational Linguistics (ACL), pages 504–513. Association for Computational Linguistics.

 Mesnil, G., He, X., Deng, L., and Bengio, Y. (2013). Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding. In INTERSPEECH 2013, 14th Annual Conference of the International Speech Communication Association, Lyon, France, August 25-29, 2013, pages 3771–3775. 	Introduction	Datasets 000	Input comparison	Classifiers comparison	Conclusion ●
		Mesnil, G., He, X., Investigation of red learning methods In INTERSPEECH International Spee France, August 25	, Deng, L., and Be current-neural-net for spoken langua 1 2013, 14th Annu ech Communicatio 5-29, 2013, pages	engio, Y. (2013). twork architectures an age understanding. <i>Ial Conference of the</i> <i>on Association, Lyon,</i> 3771–3775.	nd