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Introduction

Spoken Language Understanding

previously state-of-the-art were Conditional Random Fields
[Hahn et al., 2011]
recently Recurrent Neural Networks brings improvements
on the ATIS database [Mesnil et al., 2013]

questions:
where does the RNN gain come from?

1 classifier ?
2 representation ?

are RNNs a better choice for SLU?
is the dataset challenging enough to differentiate the two
methods?
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Possible gain sources

input representation
symbolic input
numerical input / embedding

↪→ compare both inputs with a single independent classifier that
can work with both input types

classification algorithm

↪→ compare the two classifiers on a challenging dataset
(MEDIA)



5 / 26

Introduction Datasets Input comparison Classifiers comparison Conclusion

ATIS & Media presentation

ATIS: obtain air travel information such as flight schedules,
fares, and ground transportation from a relational database

x= list︸︷︷︸ twa︸︷︷︸ flights from︸ ︷︷ ︸ washington︸ ︷︷ ︸ to︸︷︷︸ philadelphia︸ ︷︷ ︸
y=<null><airline> <null> <depart.city><null><arrive.city>

MEDIA: reservation of hotel rooms with tourist information.

x=euh︸︷︷︸ une︸︷︷︸ chambre pour deux personnes︸ ︷︷ ︸ au novotel︸ ︷︷ ︸
y=<null><number> <room-type> <hotel-mark>



6 / 26

Introduction Datasets Input comparison Classifiers comparison Conclusion

ATIS & Media sets

Air Travel Information System
Train corpus: 4978 utterances

Test corpus: 893 utterances

572 words, 64 labels

words supporting concept 49%
segmentation: easy: almost one word to concept correspondence
classification: easy: main ambiguity → departure vs arrival info

Media
Train corpus: 12922 utterances

Test corpus: 4772 utterances

2460 words, 75 labels

words supporting concept 72%
segmentation: hard
classification: hard: hierarchical attributes, complex dependencies
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ATIS & Media in the literature

ATIS
best error rate: ∼ 4/5%
many classifiers
performs well (8%→ 4%)

MEDIA
best error rate: ∼ 12%
CRF perform the best
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Symbolic vs embedded inputs

bonzaiboost (boosting over decision trees) -
straight-forward use with both representations
context window of [-3, 3] words/classes
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Figure: F-measure according to the number of boosting iterations
with symbolic and numeric features
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Symbolic vs embedded inputs on ATIS
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Symbolic vs embedded inputs on MEDIA
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Symbolic vs embedded inputs

embedding improves results and convergence speed
ATIS: ∼ +1%
MEDIA:∼ +3%

robustness to noise (annotation errors)

Representation Precision Recall F-measure
ATIS

symbolic 93.00% 93.43% 93.21%
numeric 93.50% 94.54% 94.02%

MEDIA
symbolic 71.09% 75.48 % 73.22%
numeric 73.61% 78.85% 76.14%
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Classifiers comparison

boosting over decision trees
not dedicated to sequence labeling: baseline
bonzaiboost
http://bonzaiboost.gforge.inria.fr/
[Laurent et al., 2014]

CRFs
dedicated to sequence labeling
Wapiti https://wapiti.limsi.fr/
[Lavergne et al., 2010]

RNNs
Elman Architecture
Jordan Architecture
supervised (joint) v.s. unsupervised(word2vec) embedding
public implementation based on Theano http:
//deeplearning.net/tutorial/rnnslu.html

http://bonzaiboost.gforge.inria.fr/
https://wapiti.limsi.fr/
http://deeplearning.net/tutorial/rnnslu.html
http://deeplearning.net/tutorial/rnnslu.html
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Classifiers comparison: ATIS

Algorithm Parameter Representation Precision Recall F-measure Training Time
ATIS

Bonzaiboost 100 iter numeric (word2vec) 93.50% 94.54% 94.02% ~20 m
Bonzaiboost 100 iter symbolic 93.12% 92.82% 92.97% ~3 m

CRF default symbolic 95.53% 94.92% 95.23% ~6 m
Elman RNN 100 hdn numeric (joint) 96.20% 96.12% 96.16% ~1.5h

very similar performances

RNN performs better (~1%)
main reason: embedding
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Classifiers comparison: MEDIA

Algorithm Parameter Representation Precision Recall F-measure Training Time
MEDIA

Bonzaiboost 500 iter. numeric (word2vec) 73.61% 78.85% 76.14% ~2.5 h
Bonzaiboost 500 iter. symbolic 71.09% 75.48 % 73.22% ~34 m

CRF default symbolic 87.70% 84.35% 86.00% ~15 m
Elman RNN 500 hdn numeric (joint) 83.36% 80.22% 81.76% ~31 h
Elman RNN 500 hdn numeric (word2vec) 80.48% 83.46% 81.94% ~22 h
Jordan RNN 500 hdn numeric (joint) 82.76% 83.75% 83.25% ~3.5 h
Jordan RNN 500 hdn numeric (word2vec) 83.40% 82.90% 83.15% ~3 h

CRF obtains best results ∼ +3%
despite not using embeddings

Jordan RNN had a less stable convergence
embeddings learned in a supervised and in an
unsupervised manner behave similarly
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Conclusion

1 embedding brings improvement
even with the presence of word classes knowledge (like
city-names, etc.)
more robust to noise

2 on the (easier) ATIS dataset, performances are very similar
↪→ RNNs slightly better thanks to the representation

3 on the (more challenging) MEDIA dataset, CRFs still
outperform RNNs
↪→+3%

4 output label dependencies appear to be crucial
CRF ↓ 6% without them
↪→the recurrence in RNN does not model these
dependencies efficiently

5 CRFs are faster and easier to train than RNNs
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