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Task Illustration
Speech  keywords: conference, aid, in-
ternational, ships, agreed, rangoon, bur-
ma, diplomat, burmese, western, ...

Speech  keywords: airport, promised, 
ships, aid, gateways, transporting, delta, 
burmese, hub, reopened, ...

Visual concepts: bulletproof vest, sur-
geon, inhabitant, military, uniform, doc-
tor, nurse, turban, ...

Visual concepts: buffet, dinner, dining 
table, shop room, ambulance, mercan-
tile, establishment, truck, ...

Results

Evaluation:
•	video hyperlinking task
•	ranking4 relevant video segments by similarity to referent 

video segment

•	dataset from TRECVid 2015 - relevance judged by AMT

•	two modalities used: automatic speech transcripts and de-
tected visual concepts provided by KU Leuven

Evaluation & Dataset Representation
Automatic Transcripts:
•	averaged3 Word2Vec representation of each word appear-

ing in the video segment
Visual Concepts:
•	averaged Word2Vec representation of all Leuven visual 

concepts appearing in the video segment (sorted)
Dataset Statistics:
•	30 referent video segments (anchors), 10,809 video sem-

gents to match (targets) and a ground truth with 12,340 
anchor-target pairs

Idea
•	use DNNs with identical architectures to translate from one 

modality to the other and conversely
→ direct crossmodal translation
→ if one modality is missing, only the other is used (no ze-

roed inputs)
•	enforced symmetry by tying weights in the central part

→ equivalent to training a DNN to minimize reconstruction 
errors in both directions

→ creates symmetrical mappings and a joint multimodal 
representation space in the central hidden layer
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multimodal embedding

Downsides
•	both inputs influence the same layer (directly or through other 

hidden layers) - mixed influence

•	autoencoders need to learn to reconstruct the same output 
both when one modality is marked missing (e.g. 000...0000) 
and when both modalities are presented as input

•	primarily made for multimodal embedding; crossmodal trans-
lation is a secondary function

•	additional improvement with:
•	superposition of noise to input
•	sporadic removal of one input modality
•	dropout

•	multimodal autoencoders1,2:
Common Approaches

b) separated modalitiesa) concatenated modalities
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•	given multimodal data in a continuous representation space

Goal:
•	perform retrieval, ranking, classification, etc.

Means:
•	crossmodal translation
•	early fusion / multimodal embedding

`Problem

Bidirectional Joint Representation Learning 
with Symmetrical Deep Neural Networks for 
Multimodal and Crossmodal Applications
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