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Introduction

Spoken Language Understanding

(previously) state-of-the-art were Conditional Random
Fields [Vukotic et al., 2015]
recently Recurrent Neural Networks became promising
and popular [Yao et al., 2013, Yao et al., 2014,
Kurata et al., 2016, Zhilin Yang, 2016]

questions
which RNN architecture is best suited for SLU?
are there architectural extensions that can improve
performance?
will any dataset help answer the previous two questions?
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Introduction

test different RNNs
simple RNNs (standard; Elman and Jordan architectures
tested previously)
Long Short-Term Memory (LSTM) networks
Gated Recurrent Unit (GRU) networks

architectural extensions
single direction modelling vs. bidirectional modelling
adding dialog awareness
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ATIS & Media presentation

ATIS: obtain air travel information such as flight schedules,
fares, and ground transportation from a relational database

x= list︸︷︷︸ twa︸︷︷︸ flights from︸ ︷︷ ︸ washington︸ ︷︷ ︸ to︸︷︷︸ philadelphia︸ ︷︷ ︸
y=<null><airline> <null> <depart.city><null><arrive.city>

MEDIA: reservation of hotel rooms with tourist information.

x=euh︸︷︷︸ une︸︷︷︸ chambre pour deux personnes︸ ︷︷ ︸ au novotel︸ ︷︷ ︸
y=<null><number> <room-type> <hotel-mark>
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ATIS & Media datasets

Air Travel Information System
training corpus: 4978 utterances

testing corpus: 893 utterances

572 words, 64 labels

words supporting concept 49%
segmentation: easy: almost one word to concept correspondence
classification: easy: main ambiguity → departure vs arrival info

Media
training corpus: 12922 utterances

testing corpus: 4772 utterances

2460 words, 75 labels

words supporting concept 72%
segmentation: hard
classification: hard: hierarchical attributes, complex dependencies
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Simple RNNs

simplest form of recurrent
neural networks
hidden state dependent on
previous hidden state
output dependent on
hidden state

ht = act1(W hht−1 + W xx t)
ot = act2(W oht)

ATIS MEDIA
Method F1 (%) impr. F1(%) impr.
Classic RNN 94.63 - 78.46 -
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Long Short-Term Memory (LSTM) networks

designed to efficiently
model long-term
dependencies
introduces a series of
gates (input gate, forget
gate and output gate)

f t = act1(W f [ht−1‖x t ] + bf )
i t = act1(W i [ht−1‖x t ] + bi)

Ĉ t = act2(W c[ht−1‖x t ] + bc)

C t = f tCt−1 + i t Ĉ t

ot = act1(W o[ht−1‖x t ] + bo)
ht = otact2(C t)

ATIS MEDIA
Method F1 (%) impr. F1(%) impr.
Classic RNN 94.63 - 78.46 -
LSTM 95.12 X 81.54 X

modeling long-term
dependencies helps
LSTMs outperform RNNs
on both ATIS and MEDIA
X
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Gated Recurrent Unit (GRU) networks

a recent simplification /
improvement over
LSTMs [Cho et al., 2014]
forget and input gates are
merged into one update
gate
hidden state and cell state
combined

z t = act1(W z [ht−1‖x t ])
r t = act1(W r [ht−1‖x t ])

ĥt = act2(W [ht−1‖x t ])

ht = (1− z t) + z t ĥt

ATIS MEDIA
Method F1 (%) impr. F1(%) impr.
Classic RNN 94.63 - 78.46 -
LSTM 95.12 X 81.54 X
GRU 95.43 X 83.15 X

GRUs outperform LSTMs
(and are also faster!) X
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Bidirectional LSTMs / GRUs

modeling left to right or
right to left?
why not both?

two possibilities:
integrate double
connections within the
architecture(s)
merge two architectures
working in opposing
directions

ATIS MEDIA
Method F1 (%) impr. F1(%) impr.
Classic RNN 94.63 - 78.46 -
LSTM 95.12 X 81.54 X
Bi-LSTM 95.23 ~ 83.07 X

GRU 95.43 X 83.15 X
Bi-GRU 95.53 ~ 83.63 X

poor significance on ATIS
(α = 0.1)
MEDIA: bidirectional
modeling is always a better
choice X
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Adding dialog awareness

modeling the presence of specific word classes within the
dialog history (including the current sentence, until the
current word)

e.g. {aircraft_code, airline_code, airline_name,
airport_code, airport_name, city_name, class_type,
cost_relative, country_name, day_name, ...}
binary features

history length:
MEDIA: 1 to 56 sentences per dialog
ATIS: limited to one sentence
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Dialog awareness - implementation

modeling the presence of
specific word classes
within the dialog history
(until the current word)

word classes from a
database
binary features: 37 for
ATIS, 19 for MEDIA
fully-connected dense
layer

merging with a
Bidirectional GRU to obtain
a final decision

xi xi+1xi-1 xi+ w
2xi- w

2 c0 c1 cn

Word Embedding

Forward GRU Backward GRU

Dropout

Dense

Dense

Activation

yi
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Dialog awareness - influence

improvement on MEDIA X

no significant improvement
on ATIS

for ATIS the "dialog" is
limited to the current
sentence
lack of challenging
segmentation in ATIS

ATIS MEDIA
Method F1 (%) impr. F1(%) impr.
Classic RNN 94.63 - 78.46 -
LSTM 95.12 X 81.54 X
Bi-LSTM 95.23 ~ 83.07 X
GRU 95.43 X 83.15 X
Bi-GRU 95.53 ~ 83.63 X
Bi-GRU+diag aw. 95.54 7 83.89 X
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Conclusion

1 Gated Recurrent Networks are best suited for SLU
RNN < LSTM < GRU

2 modeling is best done in both directions
LSTM < Bi-LSTM < GRU < Bi-GRU

3 modeling key parts of the dialog helps!
when there is a "real" dialog
future work: smarter dialog awareness (e.g. attention
model)

4 ATIS is not challenging enough
hard to obtain reasonable significance
MEDIA is a solid dataset that helps differentiating different
approaches
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