One-Step Time-Dependent Future Video Frame Prediction with a Convolutional Encoder-Decoder Neural Network Vedran Vukotić^{1,2,3}, Silvia-Laura Pintea¹, Christian Raymond^{2,3}, Guillaume Gravier^{3,4}, Jan van Gemert¹ vedran.vukotic@irisa.fr s.l.pintea@tudelft.nl christian.raymond@irisa.fr guillaume.gravier@irisa.fr j.c.vangemert@tudelft.nl **Proposed Architecture Problem** <u>Idea</u> • given the current video frame at time t_o and an arbitrary

temporal displacement t predict the frame at $t_0 + t$

Goal:

anticipate future motion-induced appearance change

Means:

- creating representation that encodes appearance changes over time
- embedding the input image and a continuous time variable
- translating back to the image space to visualize the anticipated video frame

Existing Work

Predicting Future Motion:

 given an image, predict optical flow at the next timestep given an image predict motion trajectories

Predicting Future Appearance:

- hallucinating possible images (conditioned GANs)
- predicting future pixels from previus pixels (Pixel Networks)
- autoencoding methods predicting the future image at the next timestep

Evaluation

- KTH human action recognition dataset (randomly split by actors - 80% in training set, 20% in testing set)
- anticipating six actions: walking, jogging, running, hand-clapping, hand-waving and boxing
- compared to sequential analogous encoder-decoder **baseline** not conditioned on time
- visual evaluation and Mean Square Error (MSE) along the edges:

	Mean Squared Error	
Action	Baseline	Our Method
Jogging	30.64	11.66
Running	40.88	17.35
Walking	30.87	19.26
Hand- $clapping$	43.23	33.93
Hand-waving	43.71	35.19
Boxing	46.22	37.71
Mean MSE	39.26	25.85

Example Anticipations

Long-Term Anticipations

Unseen Time Displacements Conclusion • anticipations at temporal distances not seen during training: Successes: ments never seen during training Downsides:

 successfully predicts future frames at arbitrary temporal displacements, including temporal displace-

• predictions are done directly, in one step

 unable to tackle ambiguities; artifacting and loss of details caused by addressable issues in videos

1.M. Tatarchenko, A. Dosovitskiy, and T. Brox. Multi-view 3D Models from Single Images with a Convolutional Network. In ECCV 2016, Amsterdam, The Netherlands, 2016.

• inspired by the architecture in [1]