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• KTH human action recognition dataset (randomly split by 
actors - 80% in training set, 20% in testing set)

• anticipating six actions: walking, jogging, running, 
hand-clapping, hand-waving and boxing

• compared to sequential analogous encoder-decoder 
baseline not conditioned on time

• visual evaluation and Mean Square Error (MSE) along 
the edges:

Evaluation 

Proposed Architecture
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Idea

Mean Squared Error

Action Baseline Our Method

Jogging 30.64 11.66
Running 40.88 17.35
Walking 30.87 19.26
Hand-clapping 43.23 33.93
Hand-waving 43.71 35.19
Boxing 46.22 37.71

Mean MSE 39.26 25.85

Example Anticipations
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Long-Term Anticipations

Unseen Time Displacements
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Conclusion

  

Downsides
• loss of details and artifacting due to motion ambiguity:

• encoding network
• image encoding branch
• time encoding branch (time modeled as a continu-

ous variable t)
• decoding network
• inspired by the architecture in [1]
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• loss of details due to larger differences between two con-
secutive frames:
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• extreme loss of details and artifacting in due to even larger 
differences between two consecutive frames:
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• loss of details due to low foreground/background contrast:
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• artifacting due to small and sporadic movements:
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• anticipations at temporal distances not seen during training:

Existing Work
Predicting Future Motion:

• given an image, predict optical flow at the next timestep
• given an image predict motion trajectories

Predicting Future Appearance:
• hallucinating possible images (conditioned GANs)
• predicting future pixels from previus pixels (Pixel Net-

works)
• autoencoding methods - predicting the future image at 

the next timestep

Successes:
• successfully predicts future frames at arbitrary tem-

poral displacements, including temporal displace-
ments never seen during training

• predictions are done directly, in one step
Downsides:

• unable to tackle ambiguities; artifacting and loss of 
details caused by addressable issues in videos 

• given the current video frame at time t0 and an arbitrary 
temporal displacement t predict the frame at t0 + t 

Goal:
• anticipate future motion-induced appearance change

Means:
• creating representation that encodes appearance changes 

over time
• embedding the input image and a continuous time variable
• translating back to the image space to visualize the antici-

pated video frame
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One-Step Time-Dependent Future  Video Frame  Prediction 
with a Convolutional Encoder-Decoder Neural Network
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