Architecture

Experiments

Conclusion

One-Step Time-Dependent Future Video Frame Prediction with a Convolutional Encoder-Decoder Neural Network

Vedran Vukotić^{1,2,3}, Silvia-Laura Pintea¹,Christian Raymond^{2,3}, Guillaume Gravier^{2,4}, Jan van Gemert¹

> ¹TU Delft, Delft, The Netherlands ²INRIA/IRISA, Rennes, France ³INSA Rennes, Rennes, France ⁴CNRS, France

{vedran.vukotic, christian.raymond, guillaume.gravier}@irisa.fr
{S.L.Pintea, j.c.vangemert}@tudelft.nl

NCCV 2016

December 12th 2016, Lunteren, NL

Introduc	tion	Architecture o	Experiments	Conclu
Intr	oduction			
	Task			
	given an i	mage, predict it	s future appearance	
		1	→ ?	
		t _o	t _o +∆t	

Architecture

Experiments

Conclusion

Previous Works / Approaches

predicting future motion

¹S L Pintea, J C van Gemert, and A W M Smeulders. "Déja vu". In: *ECCV*. Springer. 2014, pp. 172–187.

Architecture

Experiments

Previous Works / Approaches

- predicting future motion
 - predicting optical flow¹

¹S L Pintea, J C van Gemert, and A W M Smeulders. "Déja vu". In: *ECCV*. Springer. 2014, pp. 172–187.

Architecture

Experiments

Conclusion

Previous Works / Approaches

- predicting future motion
 - predicting optical flow¹

predicting trajectories²

¹S L Pintea, J C van Gemert, and A W M Smeulders. "Déja vu". In: *ECCV*. Springer. 2014, pp. 172–187.

Architecture

Experiments

Conclusion

Previous Works / Approaches

- predicting future motion
 - predicting optical flow¹

predicting trajectories²

predicting future appearance

¹S L Pintea, J C van Gemert, and A W M Smeulders. "Déja vu". In: *ECCV*. Springer. 2014, pp. 172–187.

Architecture

Experiments

Conclusion

Previous Works / Approaches II

Predicting Future Appearance

• predicting an image

Previous Works / Approaches II

Predicting Future Appearance

- predicting an image
- multiple approaches:
 - generative methods^a

Previous Works / Approaches II

Predicting Future Appearance

- predicting an image
- multiple approaches:
 - generative methods^a
 - autoencoder methods
 - image in image out
 - our approach

^aA van den Oord, N Kalchbrenner, and K Kavukcuoglu. "Pixel Recurrent Neural Networks". In: *CoRR* (2016), A van den Oord et al. "Conditional image generation with pixelcnn decoders". In: *CoRR* (2016).

Previous Works / Approaches II

Predicting Future Appearance

- predicting an image
- multiple approaches:
 - generative methods^a
 - autoencoder methods
 - image in image out
 - our approach

^aA van den Oord, N Kalchbrenner, and K Kavukcuoglu. "Pixel Recurrent Neural Networks". In: *CoRR* (2016), A van den Oord et al. "Conditional image generation with pixelcnn decoders". In: *CoRR* (2016).

Autoencoder Methods

 predictions are typically obtained for a predefined temporal displacement

Previous Works / Approaches II

Predicting Future Appearance

- predicting an image
- multiple approaches:
 - generative methods^a
 - autoencoder methods
 - image in image out
 - our approach

^aA van den Oord, N Kalchbrenner, and K Kavukcuoglu. "Pixel Recurrent Neural Networks". In: *CoRR* (2016), A van den Oord et al. "Conditional image generation with pixelcnn decoders". In: *CoRR* (2016).

Autoencoder Methods

- predictions are typically obtained for a predefined temporal displacement
- predictions at other (quantized!) intervals are obtained iteratively

Introduction	Architecture o	Experiments	Conclusion
Goal			

 given an image and a temporal displacement △t, predict the future image

Setup

- inputs:
 - image *l*₀ at current time *t*₀
 - temporal displacement Δt
- output:
 - anticipated image $I_{t_0+\Delta t}$ at time $t_0 + \Delta t$
- minimizing $MSE(I_{t_0+\Delta t}, I'_{t_0+\Delta t})$
- one-step predictions at arbitrary temporal displacements

Architecture

- encoder network
 - image encoding branch
 - time encoding branch (continuous input!)
- decoder network
- similar architecture used to generate object rotations³

³M Tatarchenko, A Dosovitskiy, and T Brox. "Multi-view 3D Models from Single Images with a Convolutional Network". In: *ECCV*. Springer. 2016, pp. 322–337.

Introd	uctior	
0000		

Experiments

Baseline

- analogous encoder-decoder architecture
 - no time modelling branch
 - one-step prediction for a fixed temporal displacement Δt
 - further predictions computed iteratively for $k \Delta t$

Introduction	Architecture	Experiments	Conclusion
0000	o	○●○○○○○○○○○	
Dataset			

- KTH human action recognition dataset
 - 6 actions (walking, jogging, running, hand-waving, hand-clapping, boxing)
 - 25 actors; 4 recordings for each actor and action

Introduction	Architecture	Experiments	Conclusion
0000	o	•••••••	
Dataset			

- KTH human action recognition dataset
 - 6 actions (*walking*, *jogging*, *running*, *hand-waving*, *hand-clapping*, *boxing*)
 - 25 actors; 4 recordings for each actor and action

- randomly split by actors
 - 80% training set
 - 20% testing set

Experiments

Conclusion

Example Anticipations

Experiments

Conclusion

Example Anticipations

Experiments

Conclusion

Example Anticipations

The Architecture is:

- able to recognize location and pose
- able to anticipate spatial displacement and appearance
- able to understand orientation (*e.g.* walking left to right vs right to left)

Experiments

Conclusion

Example Anticipations II

Experiments

Conclusion

Example Anticipations II

Experiments

Conclusion

Long-Distance Anticipations

Anticipating Unseen Temporal Displacements

- intervals during training dependent on the video framerate
- predicting unseen temporal displacements:

Quality Estimations - MSE

	Mean Squared Error		
Action	Baseline	Our Method	
Jogging	30.64	11.66	
Running	40.88	17.35	
Walking	30.87	19.26	
Hand-clapping	43.23	33.93	
Hand-waving	43.71	35.19	
Boxing	46.22	37.71	
Mean MSE	39.26	25.85	

Intro	duc	tio	n

Experiments

Conclusion

Downsides

artifacting and loss of details due to pose ambiguity:

 loss of details due to large frame differences during training (jogging):

 extreme loss of details due to even larger frame differences during training (running): input t=40ms t=80ms t=120ms t=160ms t=200ms

ntr	od	uct	io	n

Experiments

Conclusion

Downsides III

Ioss of details due to low fg/bg contrast:

 loss of details and artifacting due to small and sporadic movement:

Introduction	Architecture	Experiments	Conclusion
0000	○	000000000000	
Conclusion			

- anticipates future at arbitrary time displacements ✓
- does so in one step, with no iterations ✓
- outperforms iterative predicting in terms of MSE and visual analysis

- ambiguities represent cannot be tackled by this architecture alone X
- bigger displacements and decreased contrast lead to artifacting and loss of details X

Thank you! Questions?

